Unique Polymer Based Nano-carriers for Theranostics Application

Raja Shunmugam
Associate Professor and Head
Department of Chemical Sciences, Polymer Research Centre,
Indian Institute of Science Education and Research Kolkata, India.
sraja@iiserkol.ac.in

Polymers that have potential application in the field of drug delivery with antitumor pro-drugs are being developed. Controlled/living polymerization techniques such as ROMP are used to synthesize random and block copolymers. The advantage of ongoing work in designing pro-drugs is that one block is linked to the nano-particle/contrast agent so that the drug-carrier’s path can be influenced/monitored by external force, for example, magnetic force, thus drug delivery can be targeted. Preliminary stimuli responsive cleavage of drug from the polymer is studied using spectroscopic and chromatographic techniques. To prove the MRI capabilities of copolymer nano-aggregates, NMR experiment is performed at room temperature. Cell viability studies suggest the biocompatibility nature of the copolymer. Flow cytometry as well as epi-fluorescence microscope experiments clearly demonstrate the dual-imaging ability of the newly designed copolymer. The much higher relaxivity ratio ($r_2/r_1$) of the present method clearly establishes the superiority of our system as one of the best contrast agent known to the practitioners of magnetic resonance imaging.

References: